Common Complications Associated With Left Ventricular Assist Device (LVAD) Implantation

Dale Mueller, MD
Board-Certified Thoracic and Cardiac Surgeon

Ann Correa, RN OCN
Training & Special Projects Lead
AllMed Healthcare Management

© AllMed Healthcare Management, Inc.
Overview

• Heart failure in the United States
• Mechanical circulatory support (MCS)
• Left ventricular assist devices (LVADs)
• Optimizing outcomes of LVAD implantation
Heart Failure in the United States

• Affects about 6 million people

• More than 100,000 individuals with progressive heart failure:
 - Are refractory to available treatments
 - Have high rates of hospitalization and mortality
 - Have poor quality of life due to limited physical and social activities and psychological stress

• Heart transplantation is currently the preferred treatment for end-stage heart failure
 - However, donor hearts are in short supply and many patients do not meet the criteria for transplant

CDC. Heart Failure Fact Sheet. 2012.
Mechanical Circulatory Support: An Alternative to Transplantation

- Implantable mechanical pumps assist circulation of blood by one or both ventricles of the heart have evolved over several decades.

- Potential candidates for ventricular assist devices (VADs) include patients who:
 - Are no longer responsive to conservative medical treatment.
 - Are not candidates for a heart transplantation.
 - Are awaiting a heart transplantation.
 - Have acute heart failure and whose myocardial function is expected to return.
What Is An LVAD?

- A surgically implanted mechanical pump that is attached to the heart
 - Continuously takes blood from the left ventricle and moves it to the aorta, which then delivers oxygen-rich blood throughout the body

- Differs from an artificial heart, which replaces the failing heart completely
 - LVADs work with the heart to help it pump more blood with less work

- Can be extracorporeal, paracorporeal, implantable with percutaneous power support, or fully implantable

- May provide continuous or pulsatile flow
Indications for LVAD Implantation
Bridge to Transplantation

- Patients who require heart transplantation but who have a poor predicted survival to transplant can undergo LVAD implantation.
- At the time of transplant, the native heart and LVAD are removed and replaced by the donor organ.
Bridge to Recovery

- LVAD may be placed in a patient with cardiogenic shock with the intent to remove it after the shock condition has resolved.
- Patients in either precardiotomy cardiogenic shock or postcardiotomy shock may benefit from LVAD placement until the heart has recovered enough function that support is no longer required.
Destination Therapy: The Most Recently Approved Indication

- LVAD implantation may be used for patients:
 - With end-stage heart failure and poor predictive survival in their current medical state
 - Who are not eligible for transplantation (usually due to advanced age, significant comorbidities, or psychosocial issues)
- Patients undergo permanent LVAD implantation
Complications Associated With LVAD Placement and Contributing Risk Factors
Thromboembolism

- Clot formation may result from contact between foreign surface of the device and patient’s blood
- Most events are cerebrovascular, but often accompanied by other events (e.g., peripheral embolization of the kidneys, extremities, or visceral arteries)
- The reported incidence of thromboembolic events ranges from 10% to 25%

Thromboembolism: Risk Factors & Interventions

• Risk depends on factors such as:
 - Presence of infection
 - Pump design
 - Anticoagulation regimen used

• Interventions to prevent:
 - Adequate anticoagulation therapy
 - Careful preoperative patient selection
 - Limiting device implantation in patients with significant neurological history
 - Revascularization of carotid arteries in patients with carotid stenosis

Hemorrhage

- Postoperative bleeding occurs in 60% of patients with VADs; 20% to 40% of patients undergo reoperation
- May contribute to further complications
 - Hypoperfusion, multiorgan failure, or intracranial bleeding
 - If a patient requires massive blood transfusion, there is further risk for respiratory failure that can lead to adult respiratory distress syndrome

Risk Factors for Hemorrhage

- Need for anticoagulation
- Prolonged surgical procedure with cardiopulmonary bypass
- Extensive surgical dissection
- Hepatic dysfunction

Right Ventricular (RV) Failure

- Occurs in about 11% of patients following LVAD insertion
 - Significantly increases mortality and morbidity
 - Higher rates of hemorrhage and kidney failure
 - Lower bridge to transplantation rates
- RHF may develop suddenly after LVAD insertion
- Some degree of RV dysfunction may have existed before surgery, but the RV failure does not become apparent until after surgery
 - There is an obvious imbalance between the newly supported left ventricle and the failing right ventricle

What Causes RV Failure?

• LVAD insertion reduces RV efficiency
 - Mechanical emptying of the left ventricle causes intraventricular septum to bulge away from right ventricle into the left
 - Improved function of the left ventricle causes higher forward flow of blood into the systemic circulation, increasing venous return that may rise beyond the capability of the right ventricle

• Other factors that contribute
 - Myocardial stunning, ischemia, arrhythmias, increased pulmonary vascular resistance

Infection

- May be manifested by:
 - Pneumonia
 - Mediastinitis
 - Urinary tract infections
 - Line sepsis

- Device-related chronic infections:
 - Driveline infections
 - Pump pocket infections
 - Endocarditis
 - Sepsis

Risk Factors for Infection

- Increased patient susceptibility to pathogens when malnourished and weakened preoperatively
- Comorbidities
 - Diabetes, obesity, and chronic obstructive pulmonary disease
- Other factors
 - Length of preoperative hospital stay, postoperative bleeding, blood transfusions, and the need for surgical re-exploration
- Device design
 - Percutaneous drivelines are exposed to outside pathogens
 - Devices have many cavities and pockets that harbor microorganisms
 - Turbulent blood flow through the pumps contributes to adherence of pathogens to device surfaces

Optimizing Outcomes

• The highest risk of death after LVAD implantation is before hospital discharge

• Major determinants of successful implantation
 - Patient selection
 - Timing of implantation

• Main criteria for selecting appropriate candidates with a potentially good outcome
 - Assessment of the patient’s severity of illness
 - Patient’s ability to successfully undergo the implant procedure
Assess Compliance With Evidence-Based Guidelines

• Evidence-based clinical practice guidelines developed by professional societies
 - American Heart Association (AHA)
 - International Society of Heart and Lung Transplantation (ISHLT)
AHA 2012 Recommendations for MCS

• Includes general considerations for determining appropriateness of MCS
• Discusses management strategies for the MCS patient, including selection criteria
• Underscores two principles that have evolved over the past decade
 - Some patients are too profoundly ill with multisystem organ failure to benefit from the best MCS and aggressive inotropic therapy
 - Complex decisions about candidacy for transplantation or MCS are best made by an experienced multidisciplinary team

ISHLT 2013 Guidelines for MCS

- Addresses all phases of evaluating, implanting, and managing patients who receive LVADs or related equipment
 - Patient selection
 - Preparing patients for implantation
 - Intraoperative and immediate postoperative care
 - Inpatient and intermediate-term postoperative care
 - Long-term outpatient care

Ensure Proper Documentation

- Thorough physician documentation is critical for reimbursement of LVAD implantation.
- Most insurance companies cover LVADs approved by the FDA as medically necessary when used in accordance with device-specific, FDA-approved indications and contraindications.
General Documentation Requirements for LVADs

- **Bridge to recovery**
 - Acute cardiogenic shock, acute myocarditis, or unsuccessful weaning from cardiopulmonary bypass following cardiac surgery

- **Bridge to transplantation**
 - Risk of imminent death from left ventricular heart failure

- **Destination therapy**
 - NYHA Class IV end-stage left ventricular heart failure
 - LVEF <25%
 - Demonstrated functional limitations, with peak oxygen consumption ≤14 mL/kg/min
 - Failure of optimal medical therapy according to device-specific parameters
Identify Physicians’ Knowledge, Attitudes, and Competencies
Physician Privileging

- Recognizes physician qualifications and competency
- Defines a physician’s scope of practice and the clinical services he or she may provide
- Based on demonstrated competence
- A data-driven process
Determining Physician Qualifications

• Involves gathering information to decide the types of care, treatment, and services or procedures that a practitioner will be authorized to perform in a specific setting

• Factors to consider
 - Setting-specific characteristics
 - Physician’s education, training, and clinical experience
Optimizing the Process of Physician Privileging

- Requires qualified and objective physician-controlled peer review, with decisions that are:
 - Fair and without conflicts of interest
 - Based on dated, detailed documentation
 - Confidential and protected

- Documented physician performance should be measured against criteria that are:
 - Directly related to quality of patient care
 - Established through common legal, professional, and administrative practices
 - Endorsed by a formal consensus process
 - Publicly available
The Cost of Retaining Incompetent and Low-Quality Providers

- Potential legal liability for any injuries to patients
- Exclusion from federal and state health benefit program participation
- Loss of commercial contracts
- Loss of accreditation by healthcare standards organizations
Measure Patient Outcomes

• Evaluate the efficacy and safety of LVAD implantation
 - Mortality rates
 - Postoperative morbidity

• Identifying appropriate patients before the onset of significant organ dysfunction can improve survival and reduce the degree of morbidity
External Peer Review Ensures Quality of Care

• Ongoing evaluation of hospital practitioners ensures excellence in physician performance and the highest standard of care for patients

• External peer review allows hospitals to perform:
 - In-depth evaluation of sentinel events
 - Credentialing and re-credentialing
 - Privileging and re-privileging
 - Proctoring
 - Ongoing measurement and monitoring of physician performance
Internal vs. External Peer Review

- **Internal peer review**
 - Peer review committees composed primarily of in-house personnel often lack the resources to help the hospital achieve their performance improvement goals
 - Social and professional relationships lead to conflicts of interest

- **External peer review**
 - Avoids conflicts of interest that can arise from economic, professional, or social ties among physicians within a single institution
 - May be an effective solution for hospitals that lack adequate physician resources to conduct timely performance analyses
Systematic External Peer Review As a Risk Reduction Strategy

- Reduces medical errors through objective evaluations performed in a nonpunitive, educational context that supports a culture of continuous improvement
- Improves quality of care and patient safety
 - Physicians know that their work will be objectively evaluated at regular intervals by board-certified specialists with the same credentials and from similar practice settings
- Uncovers problematic practice patterns and physician- and hospital-level issues that need to be addressed before they turn into claims
Conclusions

• Mechanical circulatory support has evolved considerably in recent years
 - LVADs emerging as the standard of care for advanced heart failure patients requiring long-term MCS

• LVADs improve patient outcomes and quality of life, but complications persist due to:
 - Pre-existing effects of advanced heart failure
 - The requirement for extensive surgery to implant the device
 - The effects of the device in compromised patients
Conclusions (cont’d)

• Patient selection for LVAD therapy is the most important process in obtaining a successful outcome

• Evaluation requires assessing the appropriateness for device implantation based on need and risk of LVAD implant to the patient
Questions & Answers
Thank you for attending. All participants will receive a free copy of our latest publication via email:

“Common Complications Associated with Left Ventricular Assist Device (LVAD) Implantation”

For more information, contact us at:

AllMed Healthcare Management, Inc.
621 SW Alder Street, Suite 740
Portland, OR 97205
(800) 400-9916
www.allmedmd.com
info@allmedmd.com
Twitter: @allmedmd